A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio.
Here's a breakdown:
Definition: A sequence where the ratio between successive terms is constant.
Formula: The general form of a geometric sequence is:
a
is the first term.r
is the common ratio.Finding the Common Ratio: Divide any term by its preceding term.
nth Term: The nth term (a<sub>n</sub>) of a geometric sequence is given by: a<sub>n</sub> = ar<sup>n-1</sup>
Sum of a Finite Geometric Series: The sum (S<sub>n</sub>) of the first n terms of a geometric series is:
Sum of an Infinite Geometric Series: If the absolute value of the common ratio is less than 1 (|r| < 1), the sum of an infinite geometric series converges to:
Examples:
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page